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Thermal Loads Are Rising Sharply

• Thermal load in satellites is doubling in every 5.5 years
• Space Structures

– Heat flux of 700 W/cm2 (hot spots by actuators, etc.)
• To spread the hot spots (∆T~1°C across ∆x~1cm) 

requires material of thermal conductivity of κ~70 
W/m-K

• In comparison κ for adhesive ~ 0.3 W/m-K

• Electronics Cooling
– κz ~ 60-70 W/m-K is desirable for Electronics Heat 

Sink system

• Need for high fidelity thermal component design for 
tailoring its thermal properties to meet system 
requirements

Electronic cooling

Heat exchanger

Heat pipe

Heat Sink Interface
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Management of Thermal Energy in 
Materials & Systems

• Thermal 
transport in 
materials and 
system 
components

• Thermal energy 
storage

• Thermal energy 
conversion

• Etc.

• Passive system 
(tailoring 
material thermal 
properties)

• Active system 
(micro porous 
heat fluid flow, 
etc.)

• Etc.

Thermal materials & 
its interface 

property tailoring

Thermal Energy Mgmt Technical Approaches



Technical Challenge
• Numerous prior efforts have been made by mixing 

of CNT in polymers (epoxy) yields limited 
improvement in thermal conductivity (κ)

• κ (SWNT) ~ 2000 – 6000 W/m-K

• Improvement is limited to  only 125%  (κ ~ 0.7 W/m-K)

Technical Challenge

• Thermal interface design for aerospace materials

– Nano constituents interface in presence of amorphous materials 
(composites and adhesive joints, etc.) 

M. J. Biercuk, et al, Apply. Phys. Lett., 80, 2767 (2002)

Primary reason of the limited improvement 

• Phonon scattering at the CNT-polymer interface
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Two Examples of Thermal Materials 
Design for Aerospace Systems

Hybrid Fiber Composites

• Intermingled network of Nano 
platelets grown on carbon 
fibers – embedded in polymer 

Pitch 
fiber

Aligned CNTs in adhesive joints

• Incorporation of MWNTs along 
the thickness of the adhesive 
joint

Adherent

Adherent
Press & Cure

FEM modeling 
revealed need for 
establishing a 
conductive transition 
zone between MWNT 
and adherents

Thermal interface tailoring is essential 
for enhancing thermal conductivity in 

heterogeneous materialsRoy, et al., Diamond & Related Materials, 2009
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Outline

• Molecular dynamics simulation of thermal 
transport in cross-linked polymers

• Comparison of various energy components in 
polymer thermal transport 

• Thermal interface resistance of CNT/polymer 
interface

• Thermal property measurement
– Characterization tools under development
– EELS technique
– Micro heater



Heat Transport Modeling of Epoxy 
Networks



Calculation of Thermal Conductivity
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Green-Kubo Approach (Equilibrium MD): This approach uses concept of fluctuation-dissipation theorem
which relates equilibrium fluctuations to out of equilibrium properties via an autocorrelation function

Fourier Approach (Non-Equilibrium MD): This approach, also known as direct method, is analogus to 
experimental measurement. It is based on the principle that heat flux at certain cross-section is directly 
proportional to temperature gradient at that surface. 

dx
dTA

dtdQ
×

=
/ λdT/dx = Temperature gradient

dQ/Adt = Heat flux per unit area per unit time
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Hot Region Cold  RegionCold  Region

dx
dT

dtA
dQ
×

dx
dTA

dtdQ
×

=
/ λ

Thermal conductivity of the crosslinked network was found to be ~0.3 W/m-K which is in nice 
agreement with experimental findings.

ResultsNEMD Simulations: Thermal Conductivity
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EMD Simulations: Thermal Conductivity

DETDA

EPON

Network

DETDA

0.27 W/m-K

EPON

0.25 W/m-K

Network

0.31 W/m-K

Experimental values of thermal conductivity of 
epoxy networks is ~0.28 W/m-K.

Results

( ) ( )∫
∞

=
0

2 0.1 dtJtJ
VTkB

 λ

Material

Thermal Conductivity
(W/m-K)

Green –Kubo 
Formalism

Fourier Law 
Formalism

DETDA 0.27 0.20

EPON-862 0.25 0.20

Crosslinked 
System 0.31 0.30

Comparison between both approaches

Approved for Public Release, Distribution A: 88ABW-2010-3277 



Energetic Contributions to Thermal 
Conductivity
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1:     Contribution due to kinetic energy; 
2, 3: Contribution due to potential energy (vdwl and electrostatic), respectively 
4, 5: Contribution due to short range forces (vdwl and electrostatic), respectively
6:     Contribution due to long range forces (electrostatic interactions: Ewald

Sum)
7, 8: Contribution due to bonded interactions (bond stretching and angle bending)

1 2,  3 4,  5,  7,  8 6
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Energy Contribution Analysis
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Overall Contributions Virial Contributions 
• Vi rial contributions Convective cont ributions • vdwl forces Electrostaticforces • Bonded forces 

Convective Contributions 
• Kinetic energy Long range electrostatic energy 
• Short range potential energy 

Long Range Electrostatic Force 
Contribution 

• Rest long range electrostaticforces 

Virial (collision) contribution is significantly larger than convective terms. 

Van der Waals interaction and corresponding forces are the dominant contributors for 
thermal transport in polymers. 

Electrostatic and bonded contributions are negligible. 



Interface Thermal Conductance at CNT 
Epoxy Interfaces. 



System Studied

InterfaceHeatFlux TQ ∆=Λ /
Approved for Public Release, Distribution A: 88ABW-2010-3277 

Heat Input at the constant rate in to CNT in the 
center 

Heat Extraction from the outermost depicted 
(Blue) shell 

We have used previously discussed 
algorithm (with minor alterations) to build 
shown nano-composite system with 
functionalized nanotubes. 

Nanotube functionalized with 
DETDA 



Systems Studied

Interfacelengthunit per Flux Heat / TQ ∆=Λ
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Results

Temperature evolution Steady state temperatures vs. 
CH2 linkages
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Interface Thermal Resistance across CNTs: 
Transverse Connection

Effect of linkage length as well as their no. 
on overall interface conductance



Wave Packets Analysis
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0 fs 

-1000 -500 0 500 1000 
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How to measure the energy transmission 

90 %  transmission

10 %  reflection
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Single mode phonon transmission 
in functionalized CNT

-COOH

-C2H3

-CH3
(16 u)

(27 u)

(45 u)

1. Effect of the functionalization on   
the phonon energy transmission.

2. Effect of the difference in the 
functional group ….



Longitudinal Acoustic mode
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Dispersion relation: (6,6) SWCNT 
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Point Mass defects: 
Longitudinal Acoustic mode
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Group velocity effect: 
Longitudinal Acoustic mode

16
27
45



Coupling to the functional group
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CNT w ith vertical –CH2 linkers

12linkages 

6linkages 

Cross-section of (6, 6) ttanotube 

3linkages 



Phonon Energy Transmission 
in CNT w ith vertical links

• 4 Accoustic polarizations and the radial 
breathing mode are considered



Electron Emission Loss Spectroscopy
(Orbital Picture of Ethylene)

http://www.uaf.edu/chem/green
Chapter1McMurry.ppt

sp2 orbitals 

sp2 carbon sp2 carbon 

O" bond 

7r bond 

Carbon-carbon double bond 



EELS Spectrum Analysis

• pi – pi* transition
• sigma – sigma* transition
• pi - sigma* interbrand transition
• sigma - pi* interbrand transition
• In HOPG 

pi transition - ~ 6 eV
sigma transition ~ 27 eV

In diamond
sigma transition ~ 34 eV
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COOH Nanotubes in Epoxy Matrix

Nanotube
Epoxy

Interface
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STEM 
Image

TEM 
Image

Carbon Nanotubes

Epoxy Rich Region



Post EELS Analysis



Nanotube EELS Spectra

pi

sigma
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Epoxy EELS Spectra 

pi

sigma
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Pure Nanotube/Epoxy Interface EELS

23 eV
sigma

4.6 eV
pi
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COOH Nanotube/Epoxy Interface EELS

pi

sigma
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Sub-micron Scale Thermal Conductivity 
Measurement

37

Schematic view of 
SiN/Pt Heater/RTD

Keithley
4200SCSSEM

Resistance Temp Detector – RTD

SEM image of the  RTD

Test specimen of 
varying gage length 

Through 
thickness slit by 

FIB
Test 
specimens

Another test 
configuration 

using the  RTD

Versatile RTD design for nano- to sub-micron scale 
direct thermal conductivity measurement



Summary

• Thermal transport mechanism 
in amorphous materials 
systems
– Non bonded interaction provides 

the most energy to thermal 
transport in amorphous materials 
systems

– Interface covalent bonding 
between polymers and nano 
constituents surfaces is a 
necessity for improving interface κ

• Phonon wave packet dynamics to 
visualize the phonon scattering & to 
calculate the transmission function in 
meso scale heat transfer
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